Optimal Scalings for Local Metropolis–hastings Chains on Nonproduct Targets in High Dimensions1 by Alexandros Beskos,

نویسندگان

  • GARETH ROBERTS
  • ANDREW STUART
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

OPTIMAL SCALINGS FOR LOCAL METROPOLIS–HASTINGS CHAINS ON NONPRODUCT TARGETS IN HIGH DIMENSIONS By Alexandros Beskos,

We investigate local MCMC algorithms, namely the random-walk Metropolis and the Langevin algorithms, and identify the optimal choice of the local step-size as a function of the dimension n of the state space, asymptotically as n→∞. We consider target distributions defined as a change of measure from a product law. Such structures arise, for instance, in inverse problems or Bayesian contexts whe...

متن کامل

Computational Complexity of Metropolis-Hastings Methods in High Dimensions

This article contains an overview of the literature concerning the computational complexity of Metropolis-Hastings based MCMC methods for sampling probability measures on Rd , when the dimension d is large. The material is structured in three parts addressing, in turn, the following questions: (i) what are sensible assumptions to make on the family of probability measures indexed by d ?; (ii) w...

متن کامل

Optimal Proposal Distributions and Adaptive MCMC by Jeffrey

We review recent work concerning optimal proposal scalings for Metropolis-Hastings MCMC algorithms, and adaptive MCMC algorithms for trying to improve the algorithm on the fly.

متن کامل

Optimal Proposal Distributions and Adaptive MCMC

We review recent work concerning optimal proposal scalings for Metropolis-Hastings MCMC algorithms, and adaptive MCMC algorithms for trying to improve the algorithm on the fly.

متن کامل

Bayesian Inference for Duplication–Mutation with Complementarity Network Models

We observe an undirected graph G without multiple edges and self-loops, which is to represent a protein-protein interaction (PPI) network. We assume that G evolved under the duplication-mutation with complementarity (DMC) model from a seed graph, G0, and we also observe the binary forest Γ that represents the duplication history of G. A posterior density for the DMC model parameters is establis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011